A modified EPI sequence for high-resolution imaging at ultra-short echo time.

نویسندگان

  • Stefan Hetzer
  • Toralf Mildner
  • Harald E Möller
چکیده

A robust modification of echo-planar imaging dubbed double-shot echo-planar imaging with center-out trajectories and intrinsic navigation (DEPICTING) is proposed, which permits imaging at ultra-short echo time. The k-space data is sampled by two center-out trajectories with a minimal delay achieving a temporal efficiency similar to conventional single-shot echo-planar imaging. Intersegment phase and intensity imperfections are corrected by exploiting the intrinsic navigator information from both central lines, which are subsequently averaged for image reconstruction. Phase errors induced by inhomogeneities of the main magnetic field are corrected in k-space, recovering the superior point-spread function achieved with center-out trajectories. The minimal echo time (<2 msec) is nearly independent of the acquisition matrix permitting applications, which simultaneously require high spatial and temporal resolution. Examples of demonstrated applications include anatomical imaging, BOLD-based functional brain mapping, and quantitative perfusion imaging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Phase-Encoding Reduction on Geometric Distortion and BOLD Signal Changes in fMRI

Introduction Echo-planar imaging (EPI) is a group of fast data acquisition methods commonly used in fMRI studies. It acquires multiple image lines in k-space after a single excitation, which leads to a very short scan time. A well-known problem with EPI is that it is more sensitive to distortions due to the used encoding scheme. Source of distortion is inhomogeneity in the static B0 field that ...

متن کامل

Diffusion-Weighted, Readout-Segmented EPI with Synthesized T2- and T2*-Weighted Images

Purpose: Diffusion-weighted Imaging (DWI) using readout-segmented EPI (rs-EPI) with 2D navigator correction [1] is an alternative to standard single-shot EPI (ss-EPI) that improves image quality by reducing susceptibility artifacts and allowing a higher spatial resolution. This improved image quality raises the possibility that the low b-value image could be used to replace a separate T2-weight...

متن کامل

In vivo High Angular Resolution Diffusion-Weighted Imaging of Mouse Brain at 16.4 Tesla

Magnetic Resonance Imaging (MRI) of the rodent brain at ultra-high magnetic fields (> 9.4 Tesla) offers a higher signal-to-noise ratio that can be exploited to reduce image acquisition time or provide higher spatial resolution. However, significant challenges are presented due to a combination of longer T1 and shorter T2/T2* relaxation times and increased sensitivity to magnetic susceptibility ...

متن کامل

Silent high resolution echo-planar imaging for auditory fMRI

Introduction Acoustic scanner noise during image acquisition is a well-known problem in functional MRI (fMRI). The noise is created by gradient coil switching and causes an unwanted BOLD signal in the auditory cortex [1]. Most of the time, echo-planar imaging (EPI) is used for fMRI. However, this sequence produces high acoustic noise due to fast switching of trapezoidal gradients. The sound pre...

متن کامل

Three dimensional echo-planar imaging at 7 Tesla

Functional MRI (fMRI) most commonly employs 2D echo-planar imaging (EPI). The advantages for fMRI brought about by the increasingly popular ultra-high field strengths are best exploited in high-resolution acquisitions, but here 2D EPI becomes impractical for several reasons, including the very long volume acquisitions times. In this study at 7 T, a 3D EPI sequence with full parallel and partial...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Magnetic resonance in medicine

دوره 65 1  شماره 

صفحات  -

تاریخ انتشار 2011